

Students' metacognitive processes and impact on

Self-efficacy in embedded programming

Ole Schultz, Department of Engineering Technology and Didactics, DTU

Denmark

 osch@dtu.dk

Tomasz Blaszczyk, Department of Engineering Technology and Didactics, DTU

Denmark

tomb@dtu.dk

ABSTRACT
Keywords - Metacognitive process, self-efficacy, Emotion, Vignette questions

For minimizing students drop out on 2nd semester, Electrical Engineering (EE) BEng we experiment

with a written and video process guideline for support of solving programming problems and

metacognitive awareness. We will try to measure how students emotional experience programming by

using a special self-assessment vignette inquiry. On 1st semester, we will measure when programming

as novices in two study lines (EE - and IT-Electronic BEng students (IE)) and do a comparison with

2nd semester for EE students. On 2nd we introduce a process for program development in Digital

electronics and programming (DEP) and we will measure 3 times during the semester the effect of the

process by using self-assessment vignette inquiry. The working hypothesis is: Can the emotional

experiences become lower, then the self-efficacy will be higher and the drop out will be lower. The

articles describes the theoretical background for both the process and the students’ self-assessment

resulting in emotional experiences. The results so far are that on 1st semester IE there is only 20% of

students, which has a total score greater that 40 (total score max 78) whereas among the 2nd semester

EE students 33% students has a score above 40. High score means great emotional impact.

I INTRODUCTION

This article here is part of a project running in DTU Scholarship of Teaching, where we wonder about

that through several years, we have experienced that few students are dropping out from taking the

exam in programming courses in the first two semesters at Electrical Engineering (EE) BEng

programme and IT Electronics (IE) BEng programme. During the past years, we have observed that

more students have difficulty to figure out how to proceed and cope with a so-called compiler

message, or when the program does not work as expected. They do not understand what to do in the

process of programming. After conducting several interviews, we identified that students drop out or

do not take the exam due to their programming difficulties and low self-efficacy. On 2nd semester in

DEP, 5-10% of the students who persist in the first part of the semester express that they do not how

to start the programming an assignment and find it exceedingly difficult understanding how to use

binary operators in C-programming.

Research question

Our hypothesis: If students get a process for tackling problem presented in the course, then they will

get more self-efficacy and thereby the motivation for learning should increase. That leads to the

question: ‘Can metacognitive processes help students to gain more self-confidence and thus continue

to be active during the course?’

Blended learning used in the DEP

We use the approach of so-called blended learning as teaching method, which requires that students

prepare before attending traditional face-to-face lectures. For comparison and for future improvement

we studied (Alammary, 2019), where he did a systematic review on blended learnings models used for

introductory programming courses. The course content is a mix between understanding the

hardware/digital electronics and programming registers in microcontrollers. Assignments are about

communicating data to and from the microcontroller and operate on the data.

Thus, pedagogical method is blended learning, and with a reference to (Alammary, 2019), the method

is called “Supplemental model”, which means that online activities is added to the course and

connected to activities in the class. The online activities before each lecture are video recordings

presenting digital electronics and programming tutorials, online conceptual and programming quizzes.

Typically, during the face-to-face lecture, the class starts by reviewing answers to questionnaires and

discussing the results. This followed by a presentation with introduction to relevant parts of the theory

(for example about the microcontroller or the C-construction) needed for solving the assignments.

There are five assignments for hand-in during the 13 weeks course, where four of these includes an

assignment report. The students work in groups of 2-3 students. They have three hours for solving the

assignments, with supervision by lecturer and teaching assistant.

II METHOLOGY

For answering the question, we have studied some articles dealing with how to teach in programming

and how students' self-asses their ability and how the process of programming has an impact on the

self-assessment.

Literature studies - related work

When we use Self-efficacy as a term, we found in (Bandura A. 1977) his definition we find useful.

Self-efficacy perception understood as “beliefs in one’s capabilities to organize and execute the

courses of action required to produce given attainments” Bandura A. 1977.

For answering the hypothesis and research question, we have done several studies regarding criteria

students use to evaluate their programming ability. For example, (Lewis, C. M. et al. 2011) mention

students think about speed and grades. In (Gorson, J. et al. 2020) and their prior work, students’

thoughts about looking up syntax and getting errors are signs of low ability. Gorson found some of the

criteria contradicts with what instructor's think are important for novice programmers' success or

professional practices.

The authors suggested that students', to their opinion, inaccurate expectations of the programming

process could have an impact on how they self-assess. (Kinnunen, P. et al. 2012) have studied how the

students' emotional experiences during the programming process relates to the self-efficacy

assessment. They found the programming process has an impact on the students' experience with self-

efficacy and their expectation. Criteria such as fluency, and time spent on assignment has an impact

on their assessment of their abilities. They also compare themselves with other students and how those

progress in solving assignment and the time spent. For instance, students are feeling bad, because

other students managed to finish faster. External factors as working together can also have a negative

or positive impact on the self-assessment, where supporting partner relationships, partners helping

each other contributes to positive experiences. Whereas in the case of unsupportive partner

relationships, the partners direct negative feedback directly contributed to negative self-efficacy. This

work does not considered the groups’ relationships factors.

The assignment formulation can have an impact on student's self-efficacy. For example, is it not

understandable, or if it is not obvious what to do, it can result in a negative self-assessment of the

abilities. In contrast to this, in literature study we found, the students do not believe that the teacher

will give an assignment that cannot be solved, so even if it hard to understand this can make a positive

impact on the self-assessment.

In (Gorson, J. et al. 2019) they discuss the students’ mindset and it’s influence on the students

perceived ability and persistence in Computer science. We also think it has an influence on the

perceived self-efficacy. Gorson pointed out that research in psychology has demonstrated that

students' beliefs about the malleability of intelligence can have a strong impact on other reactions to

challenge and academic performance. Literature (Dweck, C. S. 2006, Loksa, D. et al. 2016, Prather, J.

et al. 2019) concludes that the mindset theory about Growing mindset and Fixed mindset have an

influence on the learning and approach to problem solving. Students with Growing mindset are more

likely to persist challenges.

Programming Process guide

In (Loksa, D. et al. 2016) they describe and discuss problem solving stages and metacognitive

prompts. They propose two interventions that teach learners how to converge toward programming

solutions while teaching them how to recognize, evaluate and refine their problem-solving strategies.

One is to provide students with explicit instructions on the goals and activities involved in

programming problem solving, while another is about using an explicit questions technique. When

students want advice, they were asked about where in the programming process they are.

A study by (Prather et al. 2019) did an experiment for investigating whether an explicit metacognitive

prompt discussion and if a process guide support metacognitive awareness. In (Falkner, K. et al. 2014)

they discuss how they can assist students in self-regulated learning strategy. The study proposes an

example guide to development of scaffolding activities to assist learning development. (Falkner, K. et

al. 2014) propose introduction of diagrams class diagrams or flow charts, assessment of the task

difficulty, identifying the needed skills - leading to time management and sub goal plan. Therefore, it

is important to conceptualize the design by diagrams as a part of the software development process,

and link it to the planning tasks. At the same time the conceptualizations means, it can change during

the programming process and therefore viewing it as an iterative approach. It can help explicit

inclusion of experimentation as a part of the design, exploring alternative design, evaluation, and

comparisons. Both studies have inspired us to formulate the process guidelines shown here below. We

adjusted and added further questions to be used in the Digital Electronics and Programming ourse

(DEP).

Process guide

In the first lecture in the 2nd semester EE class in Digital Electronics and Programming, we introduce a

process guide sheet to support the process of programming. We want to measure the effect of using

self-assessment vignette questionnaires in 1st week, the 6th week and the 12th week, for measuring the

experiences of programming when students use the process.

The process guide:

1. Read the whole assignment. Does the assignment make sense?

2. What could a solution to the task /subtasks look like? Outline the solution with a pseudocode and /

or a flow-chart.

3. Imagine a simulated execution of your hypothetical program / parts of the program. Use your

pseudocode and flowchart. Simulate that you provide running the hypothesis program. Does the

expected happen?

4. What can the C-code for the sub-task / task solution look like?

5. Open Microchip studio, start a new project, select GCC C executable, give the project a telling

name and place the project somewhere where you can find it again. press ok. Choose to use an

ATmega2560. Program the solution you have found for each sub-task found under 2.

6. Does the program perform the hypothetical run-through performed in. 3?

The link to the full process guideline is in the reference (Schultz, O., 2021)

III DATACOLLECTION

Measuring impacts from programming situations

(Gorson, J. et al. 2020) compared three different universities undergraduate students in Computer

Science. In his study, he shows students who self-assessment negative tend to have lower self-efficacy

and concludes “We also found that the frequency with which students negatively self-assess correlates

with their overall self-efficacy in their programming courses”. For data collection, Gorson uses a

summative survey together with interviews. The survey is interesting as he uses a vignette survey, for

measuring 13 distinct moments in programming and how they influences the feelings.

We find this method interesting to use in our study especially measuring if the process with guideline

has a positive impact on the student self-assessment of problem solving while programming. The

vignette questions used by (Gorson, J. et al.) 2020 relates to the professional way of working with

programming, therefore it is relevant to use for our BEng students. As they are educated to conduct

the professional practice of engineering.

We used the 13 vignette questions shown in (Gorson, J. et al. 2020), but have translated them to

Danish and we have substituted the person names with 1st and 2nd person singular subject pronoun.

The reason for not using original questions is that students find it hard to follow another person's

feeling - therefore we adjusted appropriately. We also used another scale, from 1 to 6, where 6 is most

negative and 1 is least negative. The vignette statements presented in Table 1.

Table 1 Vignette statements

A. A Simple Mistake: You are working on your programming task. You compile its code. An

error is displayed. You immediately realize that she has omitted a

parenthesis. You add parentheses. How does it affect you?

B. Start over: You are working on a hard programming task. You are planning a

solution. You write a few lines of code. You realize the approach to the

problem is not working. You decide to start over. How does it affect you?

C. Do not understand

error message:

You are working on a programming problem. You compile your code. An

error is displayed. You have no idea what the error message means. You

are not sure what to try to do. How much does it affect you?

D. Stop programming

to plan:

You start working on a programming problem. You write a few lines of

code. You realize I am confused about what the next step is. You pause

and plan your next step. You wish you did not have to stop writing code to

plan. How much does it affect you?

E. Get help from

others:

You are working on your programming task. You are stuck. You get help

to complete the task from the teacher or assistant teacher. How much are

you affected?

F. Spending time

looking up syntax:

You are working on a programming problem. You cannot remember the

syntax. You use Google to look up syntax. You are disappointed that you

could not remember the syntax yourself. How much are you affected?

G. Spending time

planning in the

beginning:

You are unsure how to start your programming task. You spend time

planning how to solve the problem. Eventually, you come up with a plan

and start writing code. You wish you did not have to spend so much time

planning before writing code. How much does it affect you?

H. Spends a lot of

time solving a

problem:

You work hard at programming to solve a programming problem. You

solve the problem. You are proud of yourself. You look at the clock and

realize how many hours you spent on the problem. You feel sorry for it

because it took so long to fix it. How much does it affect you? How much

does it affect you?

I. Do not know how

to get started:

You solve your programming task. You open the program editor but have

no idea where to start. You feel disappointed in yourself because you do

not even know how to get started. How much does it affect you?

J. Spends a long time

finding a simple

mistake:

You are working on a challenging problem. You are running into a

mistake. You are looking through the code but cannot find the error. After

a long time, you realize that it was a small typo. You think to yourself,

"Wow. I am so bad at programming. A good programmer would not take

that long to find a simple error." How much does it affect you?

K. Struggling to find

the error:

You are working on your programming homework. You run your program

and get an error. You struggle to correct the mistake for a long time. After

the error correction, the program runs, and another error occurs. You fight

again. Eventually you solve it. How much does it affect you?

L. Unable to

complete within

expected time:

You are working on your programming task. You expect to finish it in one

night. After a while, you decide to stop work because it was late. You feel

sorry that she was not able to finish it in one night. How much does it

affect you?

M. Do not understand

the problem of the

task:

 You solve your programming task. You do not understand what the task

asks you to do. You feel sad and frustrated because she cannot even

understand the question. How much does it affect you?

The vignette in Danish is in the references.

The sentences to the left cover moments in programming process and to the right there are related

sentences about what thoughts are coming up. In another study (Kinnunen, P. et al. 2012), described

six stages of experiencing programming: getting started, encountering difficulties, dealing with

difficulties, succeeding, submitting, and stopping. Stopping can happen without submitting because of

struggling with difficulties. In table 2 we have mapped the 13 vignette statements to the six stages of

experiencing programming, finding what type the vignette statements evaluate in the six states of

experiencing programming. As can be seen in table 2, the vignette statement will measure mostly on

how to handle difficulties. It does not measure the release of stress by submitting. The reason for that

is the 13 moments of programming is while we are in the process of developing a program.

Table 2 Six stages of experiencing programming

Stage vignette questions

Getting started B, D, G,L,M

Encountering difficulties A,I,J,L

dealing with difficulties C, E, H, J, K, L

succeeding H

submitting

stopping C, D,I

IV RESULTS AND DISCUSSION

Vignette answers

We collect answers during the first 4 – 5 weeks in September 2021 from three different classes two on

first semester and one on 2nd semester. Before we used the vignette enquiry, we did a test in June in

2nd semester class at EE study line and these results are presented here as well.

After 3 weeks we asked It-electronics - IE students on 1st semester in the course Introduction to

Embedded Systems and the results are shown in figure 1. In figure 1 and figure 2 we have all answers

for each student summed up, on the y-axis is the sum of scores of each vignette, on the x-axis is p1 to

pn each students answers. Vignette A has the most dark grey colour and lightest for vignette M. The

course number is included in the headline.

Referring to figure 1 and table 1, in figure 1 to the left 26 students answered out of 37. We assume it is

the active students who responded. 20% of the IE students has a total score above 40. In the figure 1

to the right, we have unfortunately only 18 responses out of 55 1st semester students enrolled in the

course 02318 at EE. If the results is regarded representative then the impact is much higher that 1st

sem. IE. As 55% has a total score above 40. This fact can be explained by that IE students received

very strong motivation in first few lessons by demonstration of previous results achieved after 1

semester by engaged students. Whereas 1st semester EE students did not receive any demonstration

Figure 1 Sum score for: 1st sem. IE students (26) and EE 1st sem. Students (18)

We also asked the students if they had been programming before enrolment on the study and 85% had

programmed before in the IE class. Whereas in the EE 1st sem. class 50% out of the 18.

That can be another reason for the difference between the two first semester classes. Another reason

can be the IE students have three different course dealing with programming on 1st semester, whereas

the EE students only have one course. For now, we do not know if there is a correlation between the

lower score and the previous experiences, but it has to be further evaluated.

In figure 1 to the right, P6 in the EE 1st semester did not answer the vignette statements therefore

empty and the p16 has just scored six for all vignettes, which perhaps is unserious. The authors does

not have the class and the students got an e-mail with the link in and this had been repeated three

times each time with explanation about why they should answer.

Figure 2 shows the sum of scores for 2nd Sem. EE students (27) out of 33 and 2nd sem. EE students

(20) out of 45 students. Students here have had the 1st semester programming course and when having

the 30082 course they have had the 2nd semester DEP (62734) course.

Figure 2 Sum score for: 2nd sem. EE students (27) and EE 1nd sem. Students (20)

In the first lesson on 2nd semester in DEP (62734) we asked the students to do the vignette inquiry

before introducing the course. 33% of the responses show a score above 40 – where maximum is 78 –

Compared to the IE students they are more influenced, it could be lack of previous programming

experiences, which can explain it – That must be evaluated further.

In June as a pre-test, we used vignette questionnaire on a 2nd semester class running in 3 weeks – 20

students answered (45% of the whole class) in digital design (30082) where they are using the 13

weeks course DEP course together with another 13 weeks course Digital design(30082). Results

presented in figure 2 to the right.

It seems only 15% total score is above 40 in the right figure, which is lower that the results in figure 2

to the left – it could be the representation of students(only 20) is not representative or due to their

programming experiences they do not become so hard influenced.

For overall comparison in the figure 3 (next page) a boxplot is chosen to reveal differences between

the 13-vignette statements for the four classes. Y-axis shows the possible score for each vignette. The

X-axis show the individual Vignette statement by Letter A to M from Table 1. The vertical rectangular

box horizontal line shows seen from top respectively the upper 3rd quartile and the lower 1st quartile.

The lines going up and down from the box is showing the spread in the dataset up to maximum score

and least score. The bold line between the two boxes indicates the median value. Open dots shows

Outliers. We will here take a closer look in some the values found in figure 3. When comparing the

1st semester’s responses, it is clear the 1st semester students at EE have a general higher median value

and 3rd quartile for the most of the vignettes compared to the 1st semester students from IE.

Figure 3 Boxplot for the students' answers

The vignette statement K “Struggling to find the error” has a median score of 5 and for the 1st

semester students EE and for IE it is 3. For all four classes of students the M “Do not understand the

problem of the task” has the high negative impact the 3rd quartile is 5 and the median value is 4 except

1st semester students at IE study.

The box plot to lower left corner in figure 3 shows students at 2nd semester 3-week 30082 course.

These students have answered while they were terribly busy solving their project and only 40%

answer – We use the data but is aware about it is only 40% who has answered.

For 1st and 2nd semester EE students the I, K L, M vignette is showing most negative impact -the I: “I

do not know how to start”, the K: “Struggling to find the error” L: “Unable to complete within

expected time” and M: “Do not understand the problem of the task”. In Table 3 is listed the most

significant results for the 4 vignette (I to M) in numbers of students and the boxplot median values

Where the median values is respectively found in figure 3, from left upper corner to lower right corner

in figure 2

Table 3: Results for vignette I to M.

Vignette Stud. course Median Students Score >=4

I 1st EE 02318 5 11 61%

 1st IE 62505 3 8 31%

 2nd EE 62734 4 18 67%

 2nd EE 30082 3 7 35%

K 1st EE 02318 5 11 61%

 1st IE 62505 3 4 15%

 2nd EE 62734 4 15 56%

 2nd EE 30082 2.5 <4 <12%

L 1st EE 02318 4 11 61%

 1st IE 62505 3 8 31%

 2nd EE 62734 3 13 48%

 2nd EE 30082 3 7 35%

M 1st EE 02318 4 11 61%

 1st IE 62505 3 12 46%

 2nd EE 62734 4 13 65%

 2nd EE 30082 4 21 77%

From table 3 we conclude that the M (Do not understand the problem of the task) has the absolute

strongest negative impact on the students’ feelings.

Aspect of the programming is error messages and finding faults. The Vignette J: “Spends a long time

finding a simple mistake” and C: “Do not understand error message” show the impact.

Table 4 lists the results

Table 4: Results for vignette C and J.

Vignette Stud. course Median Students score >=4

C 1st EE 02318 4 11 61%

 1st IE 62505 3 11 42%

 2nd EE 62734 3 12 44%

 2nd EE 30082 3.5 10 50%

J 1st EE 02318 3 7 38%

 1st IE 62505 2 2 <10%

 2nd EE 62734 2 5 19%

 2nd EE 30082 3 8 40%

It most negative impact has the understanding of error messages, which means the compiler responses,

can be a challenge to understand and that is for all 4 classes. The influence of spending time is most

influencing the EE classes

When using the table 2 above as a classification with the 6 stages of experiencing programming, then

the vignette answers is in the two difficulties stages “Encountering difficulties” and “dealing with

difficulties” is the I and M part of.

Discussions

When the results above is interesting compared to the process guideline. As the process, guideline is

as the first question is Reading the assignment text and “Does it make sense?” and step 2. If

understanding and finding part problem is clear, it should minimize the negative influence from M and

gain the self-efficacy. If it is clear what each part of the program should do then the struggling finding

errors could be minimized. But if the error is about understanding the compiler message, then it is

experiences which will do I, which perhaps is the reason for 1st semester IE students’ responses has

low score- due to privies experiences with programming.

Introduction of the process on 2nd semester EE

In the second lesson, the student should in groups of 2 to 3 student start doing the exercise 2. I orally

introduced the process guideline. The process description were before the lesson uploaded to Learn

(CMS system). I told them to use the process described and make ex. make flow chart before coding.

Observation where that only very few students did do process work, they open the programming IDE

and started up beginning writing code and discuss which register, and which bits should be set. As

supposed in the literature, the slides for the lesson2 introduced the code snippets- so they could get

some hints – regarding the step 4 in the process description sheet. Even the exercise text was adjusted

compared to earlier semesters text, so it was pointed how the process step should be done, they just

started writing code.

In week 4 they got the next exercise – and there I intervened – so they were all asked to go through the

process, understand the text, find sub-problems sketched flow charts for each part. They got 30 min.

And then we discussed their findings and, on the whiteboard, sketch some flow charts – I asked how

they find that, and the answers were that it had been fine – I seems helping them that I wanted them to

deliver on the process.

V CONCLUSSION AND FUTHER WORK

In this paper, we collected results from 71students from 1st sem. IT-Electronic, EE, and 2nd sem. EE.

Interestingly, we noticed significant difference in questionnaire answers between two study lines at

the 1st semester. One questions rises here does the students background, before enrolment have an

influence on their answers. We found if the students don not understand what the task is about can

have a negative impact on their self-assessment. Therefore, the process should help lowering it. In

addition, we had become more aware about how important the text description of assignments are. We

still have to collect two times vignette inquiries from the 2nd semester class. These results is important

for answering the hypothesis. At the conference, further results will be shown and discussed. At the

conference we should be able to present if the process lower unregistering from exam.

We think that future work might focus on investigation how to measure and where we measure and to

what extend the process has a motivation factor and can influence self-efficacy then other factors such

as social networking can be performed.

ACKNOWLEGDEMENTS

We would like to acknowledge special consultant Maria Svendsmark Hansen, DTU engineering

technology for giving feedback on this article and associate professor Hanne Løje for making it

possible to take part in Scholarship of teaching work with the possibility to write this article.

REFERENCES
Alammary, A. (2019). Blended learning models for introductory programming courses: A systematic

review. PLOS ONE, 14(9), e0221765. https://doi.org/10.1371/journal.pone.0221765

Bandura, A. (1977). Social learning theory. Pearson College Division.

Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.

Dweck, C. S. (2013). Self-theories: Their role in motivation, personality, and development.

Psychology Press.

Dweck, C. S., & Leggett, E. L. (1988). A social cognitive approach to motivation and personality.

https://doi.org/10.1371/journal.pone.0221765

Psychological Review, 95(2), 256–273. https://doi.org/10.1037/0033-295x.95.2.256

Falkner, K., Vivian, R., & Falkner, N. J. G. (2014). Identifying computer science self-regulated

learning strategies. Proceedings of the 2014 Conference on Innovation & Technology in Computer

Science Education - ITiCSE ’14. http://dx.doi.org/10.1145/2591708.2591715

Gorson, J., & O’Rourke, E. (2020, August). Why do CS1 Students Think They’re Bad at

Programming? Proceedings of the 2020 ACM Conference on International Computing Education

Research. http://dx.doi.org/10.1145/3372782.3406273

Gorson, J., & O’Rourke, E. (2019, July 30). How do students talk about intelligence? Proceedings of

the 2019 ACM Conference on International Computing Education Research.

http://dx.doi.org/10.1145/3291279.3339413

Kinnunen, P., & Simon, B. (2012a). My program is ok – am I? Computing freshmen’s experiences of

doing programming assignments. Computer Science Education, 22(1), 1–28.

https://doi.org/10.1080/08993408.2012.655091

Lewis, C. M., Yasuhara, K., & Anderson, R. E. (2011, August 8). Deciding to major in computer

science. Proceedings of the Seventh International Workshop on Computing Education Research.

http://dx.doi.org/10.1145/2016911.2016915

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016a, May 7).

Programming, problem solving, and self-awareness. Proceedings of the 2016 CHI Conference on

Human Factors in Computing Systems. http://dx.doi.org/10.1145/2858036.2858252

Prather, J., Pettit, R., Becker, B. A., Denny, P., Loksa, D., Peters, A., Albrecht, Z., & Masci, K. (2019,

February 22). First Things First. Proceedings of the 50th ACM Technical Symposium on Computer

Science Education. http://dx.doi.org/10.1145/3287324.3287374

Schultz, O (2021) link to full process guide Link to full text for the process guideline.

https://docs.google.com/document/d/1EThYp665TZNaXE12FkFGHiDs90v0drZopjVNfNujQmQ/edit

Schultz. O. (2021) link to the vignette inquiry https://forms.gle/AxYUVXLGENKXGPg98

https://doi.org/10.1037/0033-295x.95.2.256
http://dx.doi.org/10.1145/2591708.2591715
http://dx.doi.org/10.1145/2591708.2591715
http://dx.doi.org/10.1145/3291279.3339413
https://doi.org/10.1080/08993408.2012.655091
http://dx.doi.org/10.1145/2016911.2016915
http://dx.doi.org/10.1145/2858036.2858252
http://dx.doi.org/10.1145/3287324.3287374
https://docs.google.com/document/d/1EThYp665TZNaXE12FkFGHiDs90v0drZopjVNfNujQmQ/edit?usp=sharing
https://docs.google.com/document/d/1EThYp665TZNaXE12FkFGHiDs90v0drZopjVNfNujQmQ/edit
https://forms.gle/AxYUVXLGENKXGPg98

BIOGRAPHICAL INFORMATION

Ole Schultz, associate professor at DTU Engineering Technology and didactics department of Internet

of things and digital security. Giving lectures in embedded programming and internet of things in

homes. VHDL in digital design. Running projects in cooperation with the industry. Taking part in

cross-disciplinary networks with teaching and learning and UN Sustainable development goals.

Tomasz Blaszczyk: assistant professor at DTU Engineering Technology and didactics department of

Internet of things and digital security. Giving lectures in embedded programming and internet of

things, security in embedded systems, radio communication with Narrow band IOT and Lora wan.

Running projects in cooperation with the industry.

